Excel Educational Centre, Althumama
 Class - XII
 MATHEMATICS- 041
 SAMPLE QUESTION PAPER (4) 2019-20

Time: 3 Hrs.
General Instructions:
(i) All the questions are compulsory.
(ii) The question paper consists of 36 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION A

Q1- Q10 are multiple choice type questions. Select the correct option.

1. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then $A+A^{T}=I$, then the value of α is
a) $\frac{3 \pi}{2}$
b) π
c) $\frac{\pi}{6}$
d) $\frac{\pi}{3}$.
2. If A and B are square matrices of the same order, then the value of $(A+B)(A-B)$ is equal to
a) $A^{2}-B^{2}$
b) $A^{2}-B A-A B+B^{2}$
c) $A^{2}-B^{2}+B A-A B$
d) $A^{2}-B A+B^{2}+A B$.
3. If $|\vec{a}|=4$ and $-3 \leq \lambda \leq 2$, then the range of $|\lambda \vec{a}|$ is:
(a) $[0,8]$
(b) $[-12,8]$
(c) $[0,12]$
(d) $[8,12]$.
4. Let A and B two given events such that $P(A)=0.6, P(B)=0.2$ and $P(A / B)=0.5$, then $P\left(A^{\prime} / B^{\prime}\right)$ is
(a) $\frac{1}{10}$
(b) $\frac{3}{10}$
(c) $\frac{3}{8}$
(d) $\frac{6}{7}$.
5. The maximum value of $4 x+5 y$ subject to the constraints $x+y \leq 20, x+2 y \leq 35, x-3 y \leq 12$ is
(a) 84
(b) 95
(c) 100
(d) 96
6. If $\tan ^{-1} 3+\tan ^{-1} x=\tan ^{-1} 8$, then the value of x is
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{5}$
c) 5
d) $\sqrt{3}$.
7. Three balls are drawn from a bag containing 2 red and 5 black balls, if the random variable X represents the number of red balls drawn, then X can take the values
(a) $0,1,2$
(b) $0,1,2,3$
(c) 0
(d) 1,2 .
8. The value of $\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$ is:
(a) $\sin ^{2} x-\cos ^{2} x+C$
(b) -1
(c) $\tan x+\cot x+C$
(d) $\tan x-\cot x+C$.
9. Distance of plane $\vec{r} .(2 \hat{\imath}+3 \hat{\jmath}-6 \hat{k})+2=0$, from the origin is
(a) 2 units
(b) 14 units
(c) $\frac{2}{7}$ units
(d) None of these.
10. A line makes angle α, β, γ with x-axis, y-axis and z-axis respectively, then $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$ is equal to:
(a) 2
(b) 1
(c) -2
(d) -1

(Q11-Q15) Fill in the blanks

11. If $f=\{(5,2),(6,3)\}, g=\{(2,5),(3,6)\}$, then f o $g=$ \qquad .
12. The function $f(x)=f(x)=\left\{\begin{array}{l}x+5, \text { if } x \leq 1 \\ x-5, \text { if } x>1\end{array}\right.$ is continuous at all points except at $x=$ \qquad —.
13. If $A=\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ x & y & z\end{array}\right]$ is a skew symmetric matrix, then the values of x, y and z are \qquad .
14. The side of a square is increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Then the rate of increase of perimeter of the square is \qquad .

OR

For the curve $y=(2 x+1)^{3}$, then the rate of change of slope at $x=1$ is \qquad .
15. If $\vec{a}=x \hat{\imath}+2 \hat{\jmath}-z \hat{k}$ and $\vec{b}=3 \hat{\imath}-y \hat{\jmath}+\hat{k}$ are two equal vectors, then the value of $x+y+z$ is \qquad .

OR

The angle between the vectors $\hat{\imath}-\hat{\jmath}$ and $\hat{\jmath}-\hat{k}$ is \qquad .

(Q16-Q20) Answer the following questions

16. If A and B are square matrices of order 3 such that $|A|=2$ and $|B|=3$, then find the value of $|3 A B|$
17. Evaluate: $\int_{0}^{\frac{\pi}{4}} \tan x d x$.
18. Evaluate: $\int e^{x}\left(\tan ^{-1} x+\frac{1}{1+x^{2}}\right) d x$

OR

Evaluate: $\int \frac{1}{x^{2}+4 x+8} d x$.
19. Evaluate: $\int \frac{10 x^{9}+10^{x} \log 10}{x^{10}+10^{x}} d x$.
20. Find the product of the order and degree of the differential equation $x\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}+y^{2}=0$.

SECTION B

21. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.

OR
Evaluate: $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$.
22. Find the value of k for which: $f(x)=\left\{\begin{array}{cc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} & \text { if }-1 \leq x<0 \\ \frac{2 x+1}{x-1} & \text { if } 0 \leq x<1\end{array}\right.$ is continuous at $x=0$.
23. Use differentials to approximate $\sqrt{50}$.
24. Find the value of x such that the points $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

OR

Prove that $(\vec{a} \times \vec{b})^{2}=\vec{a}^{2} \vec{b}^{2}-(\vec{a} \cdot \vec{b})^{2}$.
25. Find the equation of a line which passes through the point $(-4,2,-3)$ and is parallel to the line: $\frac{-x-2}{4}=\frac{y+3}{-2}=\frac{2 z-6}{3}$.
26. A die is rolled twice and the sum of the numbers on them is observed to be 7. What is the conditional probability that the number 2 has appeared at least once?

SECTION C

27. Consider $f: \mathbb{R}_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with inverse f^{-1} of f, given by $f^{-1}(x)=\sqrt{x-4}$, where \mathbb{R}_{+}is the set of all non-negative real numbers.
28. If $x \cos (a+y)=\cos y$, then prove that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$. Hence show that : $\sin a \frac{d^{2} y}{d x^{2}}+\sin 2(a+y) \frac{d y}{d x}=0$.

Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ w.r.t. $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, if $x \in(-1,1), x \neq 0$.
29. Solve: $\left(y^{3}-2 y x^{2}\right) d x+\left(2 x y^{2}-x^{3}\right)$
30. Evaluate: $\int_{-1}^{2}\left(e^{3 x}+7 x-5\right) d x$ as the limit of sum.
31. Three persons A, B and C apply for a job of Manager in a Private Company. Chances of their selection $(A, B$ and C) are in the ratio $1: 2: 4$. The probabilities that A, B and C can introduce changes to improve profits of the company are $0.8,0.5$ and 0.3 respectively. If the change does not take place, find the probability that it is due to the appointment of C.

OR

Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation and variance of X.
32. A firm manufactures two types of products A and B and sells them at a profit of Rs. 5 per unit of type A and Rs. 3 per unit of type B. Each product is processed on two machines M and N. One unit of type A requires one minute of processing time on M and two minutes of processing time on N where as one unit of type B requires one minute of processing time on M and one minute on N . Machines M and N are respectively available for at most 5 hours and 6 hours a day. Find out how many units of each type of product should the firm produce a day in order to maximize the profit. Solve the problem graphically.

SECTION D

33. i) Express $\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
ii) If $A=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 0 \\ 1 & 3 \\ 2 & 6\end{array}\right]$, then verify that: (i) $\left(A^{T}\right)^{T}=A \quad$ (ii) $(A B)^{T}=B^{T} A^{T}$

OR

Solve given system of equations by using matrix method:

$$
\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4, \quad \frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1, \quad \frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2 ; x, y, z \neq 0 .
$$

34. Find the area of the region enclosed between the two circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$, using integration.
35. Show that the semi vertical angle of a cone of maximum volume and given slant height is given by $\cos ^{-1} \frac{1}{\sqrt{3}}$.

OR

Show that the height of the cylinder of greatest volume which can be inscribed in aright circular cone of height h and semi-vertical angle α is one third of that of the cone and greatest volume of the cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$.
36. Find the distance of the point $(2,12,5)$ from the point of intersection of the lines
$\vec{r}=(2 \hat{i}-4 \hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} .(\hat{i}-2 \hat{j}+\hat{k})=0$.

